Q.P.	Code:	16EE226
------	-------	---------

Reg	No	
Reg.	110.	į.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech III Year II Semester Supplementary Examinations July-2021 POWER SYSTEM ANALYSIS

POWER SYSTEM ANALYSIS

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- 1 a Derive the necessary expressions for building up of Z_{bus} when New element is added 6M to Reference.
 - b Derive the necessary expressions for building up of Z_{bus} when New element is added 6M between two existing buses.

	OR	
2	Define the following with suitable examples	12M
	i) Branch and Links	
	ii) Loops and cut sets	
	iii) Tree and Co-tree	

UNIT-II

3	a Define per unit system and advantages of per unit system?		5M
	b	How are reactors classified? Explain the merits and demerits of different types of	7M
		system protection using reactors	

OR

4 25MVA, 13.2KV alternator with solidly ground neutral as sub-transient reactances of 12M 0.25 p.u the Negative & zero sequence reactances are 0.35 and 0.1 /p.u. respectively a single line to ground alternator.Determine the fault current line to line voltage neglect the resistances Assume line to ground V=1L0

UNIT-III

5	a	Derive and explain about static load flow equations.	7M	
	b	Explain the data for Load flow studies.	5M	

6

OR

12M

Bus	Туре	Generation		Load		Bus Voltage	
No.		PG	QG	PL	QL	V	δ
1	Slack	-	-	-	1.	1.02	0
2	PQ	0.25	0.15	0.5	0.25	-	-
3	PQ	0	0	0.6	0.3	-	-

Determine the voltages at buses 2 and 3 after 1st iteration using Gauss-Seidal method. Take the acceleration factor α =1.6.

Derive power flow equation and draw power angle diagram for a 2-machine system with 7 **12M** negligible losses.

OR

- 7M Derive and explain how to determine of transient stability by equal area criterion. 8 a **5**M
 - What are the essential factors for stability problems? b

UNIT-V

9 A 50Hz, 4 pole turbo generator rated 20MVA,11kv has inertia has constant of H=9kw-**12M** sec/KVA. Find the kinetic energy stored in the rotator at synchronous speed. Find the acceleration, if the input less the rotational losses is 26800HP and the electrical power developed is 16MW.

OR

- Define and explain about Steady state stability limit, Transient state stability limit 7M10 a and Dynamic state stability limit.
 - Define and explain about Steady state stability, Transient state stability and **5M** b Dynamic state stability.

*** END ***

Page 2 of 2